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ASYMPTOTIC SOLUTION OF SPATIAL PROBLEMS OF 
ELASTICITY THEORY ABOUT EXTENDED PLANE SHEAR CRACKS* 

L.B. KOREL'SHTEIN 

An asymptotic solution is obtained for spatial problems of elasticity 

theory concerning shear cracks occupying a plane domain extended along 

a certain curve. Terms of the expansion of the solution in a small 

parameter characterizing the extension of the crack are constructed on 
the basis of a system of integrodifferential Eqs.(l) in the displacement 

component of points of the cracksurfaces. On the basis of the asymptotic 

formulas obtained, a dependence of the displacement of the surfaces, the 

stress intensity factors, and the specific increment of the total potential 

energy on the crack shape and the load is described, and relationships of 

the type of congruence theorems are set up /2/. Values of the stress 
intensity factors and the displacements of the surfaces that are computed 

for specific kinds of cracks by means of the asymptotic formulas are in 

agreement with the known exact values of with values obtained by a 

numerical method. 

The asymptotic solution for an analogous simpler problem about 

separation cracks that reduces to the solution of one integrodifferential 

equation, is presented in /3/. 

1. A crack extended along a line. We consider a homogeneous isotropic medium with 
a crack occupying the domain G in the plane x1 = 0. Oppositely directed forces 

(Ji$f (Xl, X2, 0) = ui3- (X1, X2, 0) = --tj (Xl, Xp), i = 1, 2 

053 hi ~2, 0) = 0, (~1. 4 E G 

are applied to the crack surfaces (the plus and minus superscripts correspond to the upper and 

lower edges of the crack). There is no load at infinity. Then the normal components of the 

displacement of the crack edges are continuous 

Q+ (~1, ~2, 0) = us- (21, 12, O), (z,, ~2) E G 

and we have for the tangential displacement components 

u,+ (Xl, X2? 0) = -u,- (Xl, X9, 0) = Ui (Zl, X2), i = 1, 2 

ui (517 52) = 0, (~17 52) E G 

The determination of shear crack surface displacements reduces to seeking the bounded 

function u (zl, x2) = u1 (zlrz2)e, + u~(x~,z~) e2 which equals zero outside the domain G and satisfies 
the integrodifferential equation /l/ 

PC v;:* [ 15 I ‘4*u (z1, x2)11 = PI (11. XP), 8 = (1 - v)lp (1.1) 

Here A is a second-order matrix with the elements aij,a,, = I- v~2,a,, = 1 - v1112,",1 = azL = 

vql'12? Iii = EJl 5 II Fr,x, is the two-dimensional Fourier transform 

ez 

PA>,,[~f(Sl, St)]= 1s exp [i (E,x)lcp(sl,~~)~xl~~z 
-m 

PG is the contraction operator in the domain G; the functions uir(lijr ti are understood to be 
generalized from the spaces s'(H') and S' (G) respectively, p and Y are the shear modulus 
and Poisson's ratio of the medium, and e,,e?,e, are the directions of the axes of the ~x1xzx8 
coordinate system. 

Eq.Cl.1) can be written in s-space in the form 

(I- Y) AY $ vr(v.YJ -2J$l, KEG (1.2) 
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We consider a crack occupying the domain G(E) of the following kind (Fig.1) I Xl I < La 
!“p’ 5 “p (-4 where L>O, the function p(zl) is bounded and p (J~)IS C3(- L,L), p > 0 while 

1s a dimensionless parameter. For small e we obtain a crack in the shape of a narrow 

strip extended along the fix, axis. The problem is to determine the asymptotic form of the 

crack surface displacement u(x,,s,. e) (corresponding to the crack G(e)) as a--t 0. 

Fig.1 

. L 

Fig.2 

We introduce the internal coordinate I' = XL/F. Proceeding as in /3/, we write (1.1) in 

Xl? 1’ coordinates in the form 

pc ([a0 + EDI + E2 (In 2/E) (f),* f E'd$ - 0 (F*)] * ,I (J-,. (1.3) 
Y, E)} = -2ngEt (q, I', e) 

cDo=- 26(x1)-&P -& diag(l -v, 1) 

Dz* = 6" (r,) diag (1 + Y, 1 - Zv) 

Oz-+- S"(sl)diag(l--,I)- 

[~(~~)I~~YI_-~~P~]di~~(lt~,~-2v) 

where C is a second-order square matrix with elements cij = 1 - tiij 

We will examine the problem of crack perturbation of an external stress field oil (51. x27 

x3) (which takes place in an infinite medium without cracks) 

t (XL, y, E) = t (Xl, x2) = t (51, EY) = 2 * + 0 (ET) 
%=(I 

It is natural to seek the asymptotic form u(z,,Y,&) in the following form that results 

from comparing asymptotic expansions of the kernel and the right-hand side of (1.3): 

t\v (s1, I-, E) 0 (9) 

Here the conditions on the functions (ii, c are the same as in /3/. Proceeding as in /3/, 

we obtain at the middle section of the crack 

The equations obtained are the equations of a plane crack of longitudinal and transverse 

shear and can be solved sequentially in quadratures. We consequently obtain 
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(1.5) 

Here and henceforth, 
(2.1) * 

From (1.5) we obtain 

unless otherwise specified, the pair (i_il take the values (1.21, 

the asymptotic form 

(I .li) 

for the stress intensity factors AL and K, of transverse and longitudinal shear atthepoints 

(11. hP!XI)) of the crack contour (for z, E(-L,L). 

2. A crack extended along a curve. We will now examine the more general case of 
a crack extended along a certain smooth curve, given in the plane :x:! z-0, without selfinter- 
sections R(l) and of length ZL. where 1 is the distance along the curve from its middle point 
along the length, 1 E 1-L. L) (closed curves with R (-L) := R(L) are also considered allowable). 
For the directions z (1),1:(i) tanqential and normal to the curve, we have 

rlR (i)M = t(ij, II (1) --CR < 7 (0 13.0 

tlr (I)'& = -6%. (I) 11 (Q, dn (&'di =- k (I) + (f) 

where k (Z) is the curvature of the curve at the point R(I) (positive of negative). We 
introduce an orthogonal system of coordinates 

in the xR =- 0 plane. 
We shall examine cracks whose domain G(C) (Fig.21 is given by the inequalities 11 ICL, 

jr?2 I< p(2) (the conditions on ~'(1) are the same as in Sect.1). As in Sect.1, the problem is 
to determine the asymptotic form of the surface disulacement u (I.nl,~l and t: --. 0. 

If we introduce 
M) * (x1, .zz) equals 

and (1.2) is written 

the coordinate system (1,M), fir= m/p(t), then the mapping Jacobian (1, 

D (I, M, E) = ep (t) II -i &p (I) k (Lfl (2.3) 

in the domain G(E) in the form 

0 (I, m, li (I), T (!), II(/), E, a/a!, s/am) Yr = - 2431 (x), s z G (c.) 

T(Z, M, F) = Ku --_ f i " ';';t;' *) D(I', M',e) dl’d.W’ 
--I.-I 

Ax = s (I’, M’) - x (l, M) 

(2.4) 

(2.5) 

where Q is a certain differential operator with variable coefficients (whose explicit ex- 
pression is not given here because of its awkwardness). Because of (2.3) we have for the 
operator K defined by (2.5) 

Kcf = off (rep) + e2H (‘pMp?k), Hcp = 
cs 

cp G’, M’) dl’ d‘,l’ 

^Ir. -. I IAxl 

Therefore, the determination of the asymptotic form Y(E,m,&) as & --, 0 reduces to 
determining the asymptotic form of.the operator H presented in /3/ (there is a misprint in 
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(2.111 in /3/ in the last integral in the braces; the term m"p'"i2) is omitted). 
Let t (1,nz,e) have the power-law asymptotic form 

t (I, m, E) c= izo dc* (E, m) + 0 (EZ), 2 E c3 (q (2.7) 

We will seek the asymptotic form u(l,m,&) in the middle section of the crack in the 
form of 11.4) (by replacing the coordinates z,,1- by 1,m and omitting terms with w governing 
the boundary layer at the ends). Utilizing (2.6) and (2.7), the asymptotic form H and 
proceeding as in f3/, we can obtain equations for u'and v which reduce, after simplification, 
to the form 

P,(qy= 1\ ~(l,m’)ln~dm’, g=L=--la 

--P(1) 
I‘ 

I (L”‘) ~1= 5 {U* (I’) 1 AR I-” - j &.I j-3 Za [ / AZ I3 j AR I-” U” (I’)]gxd dl’ 
-& 

L 

J (Co) = 5 ((AR, U” (I’)) / AR I-$ AR - j Al I-$ x Za [ [ Ai js J AR I-$ (AR, U” (I’)) ARjt.,i} dl’ 
- L 

where z, [cQ(~')]L,=~ is a second-order Taylor polynomial of the function v(I') at the point 
1' = 1, and the subscripts 1 and 2 of u', V, 1, J, U” denote components of the corres,ponding 
vectors in the directions T (1) and n(l) (such notation is later used everywhere where cracks 
along the curve are analysedl. For each fixed I Eqs.(2.8) (like their special case (1.41) 
are the equations of a plane shear crack and can be solved successively in quadratures. 

Let tjl,m,a)-=t (s) (the problem of external stress field perturbation by a crack). Then 
~~ (1, ~1) = t’ (1) m”li!, t’ (I) = [d’t;dn (l)‘],_=ltcL, and we obtain from (2.81 

(2.91 

where the derivatives are taken of the vector components. 
We obtain the asymptotic 

forthe,stress intensity coefficients K, and KY, at the points (I,=[' (1)) of the crack contour 
(1 E(--L, L)) from (2.9). 

The asymptotic solution obtained possesses the following "locality" property: the first 
three terms of the asymptotic form u (to a term on the order of ~3111 P) and K,,h, at the 
crack section l:.= 1, depend, as is seen from (1.4)-(1.6) and (2.8)-(2.10), only on the local 
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crack parameters p(lO), p' (I,), p" (I,), k (lo), k’ (1,) and on the given load and its derivatives in the 

section 1 = I, as well as on Poisson's ratio Y. The dependence of the asymptotic form of the 

solution at a certain section of the crack on the shape of the whole crack domain and the load 

in its other sections is included in the integrals l(fy) and J (fr) or in the expression for 

d*T (tiof)!dx p I which can also be expressed in terms of the integral I: 

d2T (t:f)/dq” = 21 (tiof) - 3 (tiof)pT 

It is interesting to note that the term with d’T (t,“f)/dx,’ vanishes for v = 0.5 (an 

incompressible medium) in the asymptotic expression for u2 in the case of a crack extended 

along a line (see (1.5)), and the asymptotic form becomes totally "local" and contains no 

logarithmic term. 

3. Examples. lo. We consider a uniformly loaded crack (t(.z,,t,)=t= con&) extended along 

a line. In this case the Qi in (1.5) will have the form (we take into account that tl= t2= 0) 

Qi (~1. Y, C) = tie (1 + O,125~"hj-' Iai' (\o j 2’ (1))” + Zhif"]), (3.1) 

-2, = f In (16g@fl) 

and according to (1.6) the intensity factors are expressed by the formulas 

liiLl (~ltrf (21)) =&I/r-p ttll’% wj !z:, i:P (I,), :‘) ‘: (3.") 

(-lj>h i~~p',.x~)f~- 0.25&+ (I,) I.-- o (;“,] 1 “I I 

The asymptotic form of the quantities K,, li, at the sites of their greatest values on 

(--L. L), the points of maximum crack width (where the first termof the asymptotic form (3.2) 

is a maximum, i.e., E' (51) is a maximum and P' (s1) = 0) , has the form 

As is seen from (3.1),thelongitudinal and transverse shear problems are separated in 

the case under consideration of a crack extended along a line uniformly loaded at its middle 

section, i.e., the i-th component of the surface displacement depends (to ~(6~) accuracy) 

only on the corresponding i-th load component and the crack geometry. Moreover, terms of 

order 9 vanish in the asymptotic form of u and the factors Q, are independent of Y. For 

Y= 0.5 the expression for Qz takes an especially simple form Qz (I,, e; t?.(1 J- o.l25?j"). It is 

also possible to represent (3.1) in the form 

Qt (z,. E) == t, (I ; ?,"Aj- (Q - 1) m,m 11,25t" ii. -- v,') Lj-'I") C.J.3) 

Q = I -, U.123~" {[ \0 -; T (/)I" -; 2f") = 1 ; 11.125$ j \,,” - /” 21 (/,I 

where Q is analogous to Q,,Q2 and is a dimensionless factor in the asymptotic form of the 

surface displacement of a separation crack of the same shape, loaded by a homogeneous unit 

load (see /3/, where formulas are presented for (i for the cases of cracks in the shape of an 

ellipse, a generalized ellipse, and a crack bounded by arcs of parabolas). Note that Q, mm t!Q 

for v=ll. 

Formulas (1.5), (3.1)-(3.3) provide the possibility of 

qualitatively representing the behaviour of the surface 

displacements and the stress intensity factors at the middle 

part of the crack when its extensibility grows. It can be 

shown that the displacement components ,,I and U> (just like 

the coefficients Ii, and Ki, at points of maximum crack width) 

tend to the corresponding quantities of the plane problem 

(the first terms of the asymptotic form), remaining less in 

absolute value for small t‘ than in the convex parts of the 

crack (where i"< (I) and larger in the concave (f">Il) parts. 

Here :i, and Ii, tend more slowly to quantities of the plane 

problem than the corresponding quantities for (cleavage) 

separation cracks, and more slowly the greater the value of 
,. The quantities U* and IL, behave oppositely. 

We will illustrate the properties noted in examples of 
cracks of certain specific shapes. ~ 

For an elliptical crack (p(-r,)- L1/1- z?2 LL) 

Fig.3 

Q, (II, e) = t, (1 - 0.2.7X%,-* [a', In (ICE-y - CL‘1 - cLi: + it]} (3.4) 

which yields an asymptotic form of II that agrees in all its 
terms with the asymptotic form of the exact solution /4/ 

it, (Z1,Y) = >f,?h, I/?p:!(JI)-)" I - ).,i.;‘F2) E ,, 1) ~- ,3.5j 
(--llCv;; r2k’ (tl)]-‘t,, : 12 I ~ !2 
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where li,E are the complete elliptic integrals of the first and second kinds. 

In Fig.3 we show graphs of the dimensionless transverse shear stress intensity coefficients 

Ii! /i i (the four upper curves) and longitudinal shear Ii,,'&1 (the four lower curves) on the 
axis of symmetry of an elliptical crack id,== 11) for different values of Y. The solid curves 
correspond to the exact formulas, and the lower-lying dashes to the asymptotic expressions. 
we also show for comparison the change in the corresponding coefficient for the separation 

h', K; (the two middle curves marked with circles). Here the quantities A," = l/ax/),lC:o = I/.;E;;;I,. 
KY -~ 1/zp 1, are the intensity factors oftheplane limit problems. As is seen from Fig.3, the 
accuracy of the asymptotic formulas for e (I.25 is around l%, and increases rapidly as E 
decreases. 

Table 1 

The table shows the coefficients k?'K", and ICB'R:>, obtained by using a numerical solution* 

(*The numerical solutions ofthe crack problems used for the comparison are constructed in: 

Brutyan, A.R., Gol'dshtein, R.V. and Fedorenko R.P., Statics and kinetics of spatial shear 

cracks. Preprint No.88, Inst. Prikl. Matem. Akad. Nauk SSSR, Moscow, 1985.) (indicated in the 
parentheses) and the asymptotic values in the section z1 = 0 for cracks in the shape of a 

generalized ellipse /3/. As is seen from the table, the asymptotic values of the quantities 

presented increase as the parameter ; decreases. This is associated with the fact that the 
domains of cracks with large ; are inscribed in the domains of cracks with smaller ; (see 
Sect.4). 

2O. We consider an arbitrary uniformly loaded crack extended along a curve. In this 

case 
Q, (l,.!r,t) 7 I, 11) (1 (l.1'5Zi'?,~'>j!M) -' I"@?$ (2111 I(; (1 IX,,) (iLYjJ_’ (3.0) 

The expression for 0:: (because of its awkwardness) is presented only for an annular 

crack of radius R - r,(i)- (H,+ R,):! (where 11, and R, are the outer and inner radii of the 

ring) : 

Therefore, the longitudinal and transverse shear problems become distinct for an annular 

crack. It is also, interesting to note that according to (3.6) and (2.10) ti, can be larger 

(in absolute value) in maximal-width sections of a uniformly loaded curved crack at both the 
inner (.v/ = --1) and outer (AI = 1) contours (depending on the sign of the coefficient I- 3%') 

while K, and K, are always greater on the inner contour for separation cracks /3/. 

3O. We consider an annular crack on whose edge the load has the form t = A (R+-PW)C(~), 

which corresponds to torsion around an axis parallel to 0.~~ and passing through the centre 

of the crack. In this case (2.8) and (2.10) yield 

u, (1. I?, .Pi -= .1111"-" 1/pgpT-_m', (M, :) 1. 0 (t3) 

Kn (2. +I(,:) .= j- fG.IR [Q,, +I, F) o i.P)] 

ii%= 0, h,: 0 because of the symmetry of the problem. As \ grows the quantities U, and li, 

grow insignificantly in absolute value. 
40. We will establish certain properties of the asymptotic solution obtained that are 

analogous to comparison theorems for separation cracks /2/. We will henceforth limit our- 

selves to the case of an identical uniform load for all the cracks. 
Let the cracks G, (t), L', (*) be extended along the very same curve l!(1) and c, (P) G, i?) 

(Fig.4). It can obviously be assumed that the function 1'1 (0 is given on the whole [--L.Li 

by predefining it by zero on l--L, u) v (h, 121 (see Fiq.4). Then (jl (1) 4 o2 (I), v1 E [-L. L]. Here 

if G, (e) # G, (e) (i.e., 11~ + p2 on I--L, LI), we shall say that G,(E) is inscribed in G,(F). 

Meanwhile if p, (lo) = pz (2,). I, E (n, b), then the contours of C,(F) and G, (e) are tangent in the 

section I = 1, (pi' (lo) = pi’ (lo)). Let us consider cracks G,(E) and G*(C) extended along a line, where 

G, (E) is inscribed in C,(E). If p, (5, ) pz (I~%), .zl” E (II, 0). then by comparing terms of the 
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Fig.4 Fig.5 

asymptotic form (3.3) for two cracks, it can be shown that for small E the following 
inequality holds: 

0 < c < Qi' (sp, &)f$ <&a (S;", &)I% (Y # 0.5) (3.8) 

where the arbitrary constant is c~(O,i). Hence, by taking account of (1.5) and (3.2), we have 
for sufficiently small E and z1 E (q, b), 1 Y I < min ifh (d, PZ fdi 

I ui’ (31~ Yt 8) I < I L&t* CZlr y* e, I (3.9) 

The inequalities (3.9) are analogues of comparison theorems 
We will now examine how the quantity 

6W~lsS --= pvrr [(I - vi lip I- Kg] (&v = 0.5{1_') 

which is the specific increment of the total potential energy of 
of a shear crack (as is known, its value governs the possibility 

for separation cracks. 

,:!.lll) 

a body during the advancement 
of crack growth at a given 

point of the contour), will change as the crack domain varies. Taking account of (3.9) and 
(3.10), we have for cracks G,(E) and G,(e) extended along a line such that G,(F) is in- 
scribed in G, (e), for vz, E(II,~) and sufficiently small c 

(GW,'SS) (51. c "PI M) < @fl',,6S) 1%. ?z EI'2 (.F,)) (3.11) 

(v 7 0.5, t + 0) 

For the general case of cracks G, (E!, G, (e) extended along a curve (G,(e) is inscribed in 
G, (El). the analogous inequality 

(bW,RS) (Z, i-p, (1). 6) < (6WJ6S) (1, +p1 (Z), 6) P =+ 0) (3.12) 

is generally false, as will be seen later. However, we will show that (3.12) holds (for 
sufficiently small e) for Y <yO = Ii, (5 - I/E) z 0.49845. In the cases p,(Z)< p1 (I) and PI (Z) = Pz (Z), 
h"(Z)<f"z(Z) the validity of the inequality (3.12) for sufficiently small e (for ~10.5) is 
established by using (2.9), (2.10), (3.10) by comparing terms of the asymptotic form 6W,/6S 
and BW,IBS of orders a and &31Il E , respectively. In the case when pI (1) = pz (Z), fl" (Z) = fr" (I) the 
equation 

f3.13) 

L 

I* (fz - fl) = s b’ (Z’, 1) I AR I+ lfz (1’) - fi (Ul a 
-L 

B (1'. Z) = (1 - 2~) (v (I'), Y (1)) + 3~ (Y (4, e,,) (v (11, e,,), e~,=WI*R I 

follows from (2.9), (2.10), (3.10). 
We show that B(Z',Z)>U for v<so. We then obtain Z*(Zz-Zrt) >O and the inequality (3.12) 

will be proved for small S. 
Let 9 be the angle between v(Z') and v(E). Then 

(F/Z~~arecosI:!V'f-s8i(2-v)]<n:2 (3.14) 

Indeed, let 11' be the angle between t and v (Z). where tg y = vtgcz!(tgP c( + 1 - v). and t? is 
the angle between t and n(Z). Considering the extrema of tan 21 as a function of tan u, we 
obtaintheinequality lp< BI'CCOS ]2 l/-_-(2 --)I. An analogous estimate holds for the angle between 
t and y (I'). We hence obtain (3.14). 

Let <pL,'pz be the angles made by ebR with v(Z).y(Z'), respectively, and (ppz ---,= 'p. Then 

B (Z. I') = / y (I’) j / p (I) 1 [(1 - 2v) COS cp _c 3Y COS TX eos (p*] = 
0.5 1 Y (I’) 1 / y (0 I I(2 - VI cm p i 3v COB (% -t Pz)] 
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According to (3.14) 

cos cp = 2 cost (e/2) - 11, 8 (1 - v) (2 - vy - i 

(2 - v)cos cp + 3v cos (cpl + w) 2 8 (1 - v)i(Z - v) - 2 + Y -3~ = 
2 (v2 - 5v + 2)/(2 - v) > 0 for ('<Vo 

The proof of inequality (3.12) is completed. 
Ey starting from the above exposition, an example can be constructed for Vv>v,, in which 

inequality (3.1.2) does not hold. Thus, an annular crack can be taken as G, W and an annular 
crack with a tiny "expansion“ (Fig.5) as &(P). Selection of the location of the point R(I) 
(in which (3.12) is not satisfied), and the "expansion", as well as the direction of the load 
t is shown in Fig.5, where the relationship F/Z =arctg I/G should be satisfied. 
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FINITE-PART INTEGRALS IN PROBLEMS OF THREE-DIMENSIONAL CRACKS* 

A.M. LIN'KOV and S.G. MCGILEVSKAYA 

An effective method is proposed for solving the boundary integral equation 
(BIE) for the problem of a crack along a curvilinear surface in an elastic 
space on the basis of the transformation of the initial integrodifferential 
equation into an equation without derivatives. This is achieved by using 
the concept of the finite-part integral (FPI). Quadrature formulas are 
presented for such integrals over arbitrary convex polygons by approximating 
displacement discontinuities on the boundary by polynomials. 

The well-known BIE for three-dimensional cracks contain either 
derivatives of the unknown functions or derivatives of a surface integral 
/l-7/. In both cases the presence of the derivatives significantly 
complicates the solution. However, as is shown in /8/, these difficulties 
are reduced in the case of a plane crack of normal discontinuity if the 
FPI concept is utilized /9, lo/. In this connection, it is useful to 
investigate the possibility of applying such an approach to the more 
general problem of a crack of arbitrary discontinuity and to develop the 
numerical side of its utilization. Both aims are pursued in this paper: 
the extension of this idea to the general case of three-dimensional cracks 
is given and methods are indicated for evaluating the integrals that 
originate by presenting quadrature formulas convenient for the numerical 
realization of the BIE method on a computer. 

1. The consideration of the problem is based on the form of the BIE for three-dimensional 
cracks, which contains only derivatives of integrals over the surface but no derivatives of 
the displacement discontinuities under the integral sign /l, 6/. The integrals in the BIE 
have singularities generated by the term 1,'r and combinations of its powers with differences 
between the coordinates of the control point x and the variable point of integration g (ris 
the distance between the points). This does not permit differentiation under the integral 
sign since it results in a non-integrable singularity (in the general case the original 

*Prik1~~~t~.~e~~.,50,5,344-850,1986 


